Bạn bè
Music
Bình luận mới
Phạm Hà Phong Vũ trong
Isaac Newton
|
Mr WHY” & Định lý Bất toàn
|
Mệnh đề này không có bất cứ một chứng minh nào |
Phiên dịch ngược mệnh đề trên sang ngôn ngữ của logic toán, chúng ta sẽ có một mệnh đề toán học đúng nhưng không thể chứng minh được.
Đặc trưng của loại mệnh đề này là ở chỗ nó nói về chính nó, vì thế chúng được gọi là “mệnh đề tự quy chiếu” (self-referential statements).
Từ xa xưa, khoảng 600 năm trước CN, một nhà thơ kiêm triết gia cổ Hy Lạp là Epimenides ở xứ Cretan cũng đã nêu lên một mệnh đề về một kẻ tự nói về mình, “Ta là kẻ nói dối!” (I am a liar!), để khuyến cáo các nhà thông thái về cái vòng logic luẩn quẩn của những mệnh đề tự nói về mình. Mệnh đề này rất nổi tiếng và đã đi vào lịch sử triết học, ngôn ngữ học, logic học với tên gọi “Nghịch lý Cretan” hay “Nghịch lý Epimenides”.
Siêu Toán Học xét cho cùng chính là một hệ thống toán học tự quy chiếu, bởi vì nó dùng toán học để phán xét chính bản thân toán học!
Vậy Chương Trình Hilbert ắt phải sa vào cái vòng logic luẩn quẩn, như một kẻ đi tìm điểm cuối cùng trên một đường tròn vậy. Chính Nghịch Lý Russell đã chỉ ra cái vòng luẩn quẩn trong Số Học của Frege, nhưng đáng tiếc là Russell lại không nhận ra bản chất bất toàn của logic toán học, nên ông lại tìm mọi cách “khắc phục” sai lầm của Frege, hòng tiếp tục giương cao ngọn cờ của Chủ Nghĩa Hình Thức. Phải đợi đến khi Định Lý Gödel ra đời thì Chủ Nghĩa Hình Thức mới thật sự bị khai tử! Thật vây:
● Nếu Chương trình Hilbert có tham vọng xác định rứt khoát tính trắng/đen, đúng/sai của bất kỳ một mệnh đề nào thì Định Lý Gödel lại khẳng định toán học tồn tại những mệnh đề không thể quyết định được!
● Nếu Chương trình Hilbert muốn chứng minh tính phi mâu thuẫn của toàn bộ toán học thì Định Lý Gödel lại khẳng định không tồn tại một quy trình nào để chứng minh tính phi mâu thuẫn của một hệ tiên đề!
Cụ thể, Hilbert muốn chứng minh tính phi mâu thuẫn của Hệ Tiên Đề Số Học (bài toán số 2 trong số 23 bài toán Hilbert thách thức thế kỷ 20), nhưng Định Lý Gödel khẳng định rằng bài toán ấy là vô vọng.
Định lý 2 có thể nói rõ hơn như sau: Không thể kiểm tra tính phi mâu thuẫn của một hệ thống A nếu chỉ sử dụng những tiên đề của hệ A, bởi vì trong hệ A luôn tồn tại những mệnh đề không quyết định được. Muốn kiểm tra tính phi mâu thuẫn của hệ A, buộc phải đi ra ngoài hệ A để bổ sung thêm những tiên đề mới cho A. Khi đó ta có một hệ thống mới, gọi là A mở rộng, trong A mở rộng lại xuất hiện những mệnh đề mới không quyết định được. Quy trình đó cứ tiếp diễn mãi và rốt cuộc là chẳng bao giờ đi tới đích cuối cùng. Vậy tham vọng tìm kiếm “Con Voi Toán Học” là BẤT KHẢ!
Sự thật tưởng như đã quá rõ, vậy mà “bóng ma” của Chủ Nghĩa Hình Thức vẫn tiếp tục ám ảnh nhiều nhà toán học và giáo dục cho đến tận hôm nay. Đó là trào lưu “Toán Học Mới” ở phương Tây những năm 1960, và là hiện tượng “dạy giả + học giả” ở nước ta hiện nay mà báo chí không ngừng phàn nàn kêu ca.
Nhưng nếu toàn bộ cộng đồng toán học mà bảo thủ như vậy thì ai là người đã đưa tên tuổi Gödel trở lại đúng vị trí và tầm vóc của ông như hôm nay? Tại sao tạp chí TIME lại tôn ông là nhà toán học vĩ đại nhất thế kỷ 20?
Đó là nhờ công sức của những nhân vật lỗi lạc mà chủ yếu đều hoạt động trong lĩnh vực khoa học computer. Đầu tiên phải nhắc đến John von Newman, một nhà khoa học phi thường, một trong những ông tổ của khoa học computer tại Mỹ. Vốn là một cộng sự đắc lực trong Chương Trình Hilbert, nhưng ngay sau khi biết Định Lý Gödel, Newman đã lập tức huỷ bỏ các bài giảng theo chủ nghĩa hình thức để thay thế bằng Định Lý Gödel. Cùng với những công trình của Alan Turing và Alonso Church, và sau này của Gregory Chaitin, giới khoa học computer càng ngày càng nhận thấy Định Lý Gödel có ý nghĩa lớn hơn rất nhiều so với trước đây người ta tưởng: Ý nghĩa ấy vượt ra khỏi phạm vi toán học, bao trùm lên hàng loạt ngành khoa học mũi nhọn trong xã hội hiện đại, đặc biệt là khoa học computer, và cuối cùng là ý nghĩa sâu xa về triết học nhận thức.
Ý nghĩa triết học đó đã được chính Gödel nói rõ: “Ý nghĩa của cuộc sống là ở chỗ biết phân biệt ước muốn với hiện thực”!
Hệ thống giáo dục hiện đại có quá nhiều ước muốn – ước muốn tiến thật nhanh, ước muốn biến trẻ em thành những “thần đồng” – nhưng lại chẳng hiểu gì về khái niệm giới hạn của nhận thức mà truyện ngụ ngôn “Thầy Bói Xem Voi”(13) của John Saxe đã nói từ lâu và Định Lý Gödel đã khẳng định một cách không thể chối cãi được dưới dạng toán học!
Vậy trong khi giới khoa học và công nghệ computer thấy rõ ý nghĩa trọng đại của Định Lý Gödel để hướng nghiên cứu vào những đề tài thực tiễn, dẫn tới cuộc cách mạng thông tin ngày nay, thì nền giáo dục phổ thông lại khư khư ôm chặt cái tinh thần “cổ lỗ sĩ” của Chủ Nghĩa Hình Thức, biến sự học thành “hư học”, tụt hậu, không theo kịp đà phát triển của khoa học và công nghệ. Đó là một nghịch lớn về giáo dục. Nghịch lý ấy xuất phát từ chỗ không nhận thức được ý nghĩa và tầm vóc của Định Lý Gödel.
● Trong cuốn “An incomplete Education” (Một nền giáo dục không đầy đủ), Judy Johns và William Wilson viết:
-Định Lý Gödel cũng được sử dụng để lý luận rằng computer sẽ chẳng bao giờ thông minh như con người, bởi vì phạm vi hiểu biết của nó bị giới hạn bởi một hệ tiên đề cố định, trong khi con người có thể khám phá ra những chân lý không thể dự đoán trước …
-Định lý này cũng đóng một vai trò quan trọng trong lý thuyết ngôn ngữ hiện đại, trong đó người ta nhấn mạnh rằng khả năng diễn tả của ngôn ngữ sẽ tăng lên bằng những phương cách mới nhằm thể hiện ý tưởng.
-Định lý này cũng được dùng để giải thích rằng bạn sẽ chẳng bao giờ hoàn toàn hiểu được chính bạn, bởi vì ý nghĩ của bạn, giống như bất kỳ một hệ thống khép kín nào khác, chỉ có thể biết về bản thân mình dựa trên những kiến thức của chính mình. (Khi chúng ta tự nhận định về bản thân mình thì hệ tư duy của chúng ta trở thành một hệ tự quy chiếu, PVH).
● John von Neuman, người có mộ chí cách mộ Gödel chỉ 10m, nói:
-Theo những trải nghiệm của những người hiện còn sống, (thế kỷ 20) đã có ít nhất 3 cuộc khủng khoảng nghiêm trọng … trong đó có 2 cuộc khủng hoảng về vật lý, được gọi là khủng hoảng về nhận thức, đó là việc khám phá ra thuyết tương đối và lý thuyết lượng tử … Cuộc khủng hoảng thứ ba xẩy ra trong toán học. Đó là một cuộc khủng hoảng nghiêm trọng về nhận thức, liên quan tới việc tìm kiếm những phương pháp đúng đắn và chặt chẽ để đưa ra một chứng minh toán học chính xác. Toán học trước đây vốn được coi là tuyệt đối chặt chẽ, vì thế cuộc khủng hoảng này là hết sức bất ngờ, và lại càng bất ngờ hơn vào những ngày về sau, khi mà những phép mầu tưởng rằng không thể nào xẩy ra. Tuy nhiên nó đã xẩy ra(14) (“Phép mầu” ấy chính là Định Lý Bất Toàn của Kurt Gödel, PVH).
● Bách khoa toàn thư Wikipedia cũng nhận định:
Einstein trao tặng Gödel Giải thưởng Albert Einstein vì những công trình xuất sắc trong khoa học tự nhiên
(Princeton 1951)
● Trong cuốn “Gödel, A Life of Logic” (đã dẫn), John Casti & Werner DePauli nhấn mạnh những ý nghĩa cực kỳ quan trọng sau đây:
-Gödel đã khám phá ra rằng cho dù tồn tại những chân lý về mối quan hệ giữa các con số thuần tuý (ý nói các con số tách rời ý nghĩa vật chất thực tế, PVH), thì các phương pháp suy diễn logic thực ra vẫn quá yếu để chúng ta có thể chứng minh tất cả những chân lý đó. Nói cách khác, đơn giản là thế giới chân lý lớn hơn thế giới chứng minh.
-Việc công bố một chứng minh không thể phản bác được rằng tồn tại những mệnh đề toán học được coi là đúng nhưng không thể chứng minh được, như Gödel đã làm năm 1931, đã gây chấn động thế giới toán học như một vụ nổ không khí ở Bắc cực giữa mùa đông lạnh buốt.
-Kết luận chủ yếu của Wittgenstein, rằng “logic là cần chứ không đủ để mô tả bất kỳ một thực tế khách quan nào”, và rằng “ngôn ngữ không thể bắt kịp với tất cả những gì tồn tại trên thế giới”, đã được Gödel trình bầy dưới dạng toán học … Về căn bản, cái mà Godel chỉ ra là không có một dạng toán học nào có thể đủ thông minh để biểu hiện đầy đủ khái niệm chân lý thường ngày.
● Nhận định trên cũng được Hofstadter nhấn mạnh trong cuốn Gödel, Escher, Bach như sau:
-Gödel đã chỉ ra rằng thế giới chứng minh là một thế giới nhỏ hơn thế giới chân lý, bất kể hệ tiên đề của thế giới ấy ra sao.
Có nghĩa là toán học – lĩnh vực nhận thức mà ta tưởng là “ông vua của các khoa học” – thực ra cũng rất “yếu”: Bằng trực giác, con người có thể cảm nghiệm được những chân lý toán học mà chính toán học không thể chứng minh! Gödel đã mô tả điều này rõ hơn ai hết:
Thế giới chân lý có thể chứng minh được quá nhỏ so với thế giới chân lý có thể nhận thức được (bằng trực giác + mọi phương tiện nhận thức), nhưng thế giới chân lý nhận thức được lại quá nhỏ bé so với thế giới hiện thực.
Có nghĩa là thế giới hiện thực quá mênh mông so với thế giới có thể chứng minh được! Vì thế Gödel không thể cầm lòng mà thốt lên:
“My God, the mazes must be enormous!” (Ôi lạy Chúa, cái mê cung (Ngài tạo ra) mới khổng lồ làm sao!). Lời thán này làm ta nhớ đến lời thán của Pierre Simon de Laplace một thế kỷ trước: “Ce que nous savons est peu de choses, ce que nous ignorons est immense” (Cái ta biết thì quá ít ỏi, cái ta không biết thì mênh mông). Nhưng Laplace chỉ nói như một tâm sự triết lý, trong khi Gödel nói như một khẳng định khoa học! Đó không phải là chủ nghĩa “bất khả tri” (Agnosticism), mà là khoa học về giới hạn của nhận thức.
● Bách Khoa Toàn Thư Triết Học Stanford (Stanford Encyclopedia of Philosophy) cho biết(16):
-Năm 1986, Solomon Feferman (giáo sư Đại Học Stanford, Mỹ, một nhà toán học và triết học khoa học nổi tiếng) nhận định rằng Kurt Gödel chiếm một vị thế không ai có thể so sánh được: Đó là nhà logic quan trọng nhất trong thời đại chúng ta … Có lẽ trong số những thành tựu có ý nghĩa nhất về logic kể từ những thành tựu của Aristotle, Đinh Lý Bất Toàn của Gödel là một bước ngoặt trong toán học thế kỷ 20. Công trình của ông đụng tới mọi lĩnh vực của logic toán học, nếu không phải là nguồn kích thích căn bản trong hầu hết các trường hợp. Trong công trình triết học của mình, Gödel đã trình bầy và bảo vệ chủ nghĩa Platonism trong toán học, bao gồm quan điểm cho rằng toán học là một khoa học mô tả, và rằng nhận thức chân lý toán học là một đối tượng khách quan (thay vì chủ quan do con người tự nghĩ ra, PVH).
● Và sau đây là nhận định trên một số trang mạng khoa học(17):
-Gödel đã chỉ ra rằng có những bài toán không thể giải được bằng bất kỳ một tập hợp quy tắc hoặc quy trình nào; để giải những bài toán đó, người ta luôn luôn phải mở rộng hệ tiên đề. Điều này đã phủ nhận một niềm tin phổ biến vào thời đó rằng các ngành toán học khác nhau có thể tập hợp lại và đặt trên một nền tảng logic duy nhất.
-Sau này Alan Turing đã đưa ra một diễn giải những kết quả của Godel bằng cách đặt chúng trên một cơ sở thuật toán: Có những con số và hàm số không thể tính toán được bằng bất kỳ một chiếc máy logic nào.
-Gần đây hơn, Gregory Chaitin, một nhà toán học làm việc tại IBM, đã nhấn mạnh rằng những kết quả của Godel và Turing đã xác định những giới hạn cơ bản đối với toán học.
-Là một trong những nhà logic xuất sắc nhất của mọi thời đại, Gödel với công trình của ông đã gây ra một va chạm vô cùng lớn đối với tư duy khoa học và triết học thế kỷ XX, vào lúc mà rất nhiều người, như Bertrand Russell, Alfred Whitehead và David Hilbert đang cố sử dụng logic và lý thuyết tập hợp để hiểu được toàn bộ nền tảng của toán học .
-Định lý Gödel đã chấm dứt một nỗ lực kéo dài một trăm năm hòng thiết lập một hệ tiên đề cho toàn bộ toán học. Nỗ lực chủ yếu đã được thực hiện bởi Bertrand Russell trong cuốn Principia Mathematica(1910-1913). Một nỗ lực khác là chủ nghĩa hình thức của Hilbert, nhưng nỗ lực này đã bị giáng một đòn chí tử bởi những kết quả của Gödel.
-Định lý Gödel là một bước ngoặt trong toán học thế kỷ 20, chỉ ra rằng toán học không phải là một cái gì đó hoàn hảo như ta vẫn tưởng. Định lý này cũng được sử dụng để ngụ ý rằng không bao giờ có thể lập được một chương trình cho computer để trả lời mọi câu hỏi toán học.
Tầm vóc của Định Lý Gödel quá lớn, nhưng bài báo đã quá dài, phải tạm kết ở đây bằng những câu hỏi để cùng suy ngẫm:
-Liệu có thể hiểu đúng bản chất của toán học bằng cách đóng khung hiểu biết trong các tiên đề và định lý toán học không? Gödel gợi ý chúng ta rằng muốn hiểu toán học đầy đủ hơn, phải đi ra ngoài toán học! Vậy bên ngoài toán học là cái gì, nếu không phải là những phương tiện khác của nhận thức và đặc biệt là nhận thức trực giác dựa trên quan sát cuộc sống thực tế?
-Có phải Logic là “chiếc kim la bàn hướng tới chân lý” không? “Logic là gì? Phải chăng đó là những quy luật tư duy chính xác? Kinh nghiệm thường ngày và những nghiên cứu phong phú của các nhà tâm lý học cho thấy phần lớn tư duy của chúng ta không tuân theo logic. Từ đó suy ra rằng, hoặc phần lớn tư duy của con người là sai, hoặc logic chỉ tác động trong một phạm vi quá hẹp. Computers chính là những chiếc máy tuân thủ logic, đó chính là câu trả lời! Logic là những quy tắc của máy tính! Logic cũng áp dụng cho con người khi con người cố gắng biến mình thành những chiếc máy tính!”(18).
-Định Lý Gödel khuyến cáo rằng không thể có bất cứ một thứ TOE (Lý Thuyết Về Mọi Thứ) nào cả. Vậy khoa học có nên tốn quá nhiều tiền của và chất xám vào những đề tài phiêu lưu, nặng về khoa trương sáo rỗng không? Một lần nữa xin nhắc lại di huấn của chính Gödel: “Ý nghĩa của cuộc sống là ở chỗ biết phân biệt ước muốn với hiện thực”!
-Liệu việc nhồi nhét logic và tập hợp vào đầu trẻ em có biến trẻ em thành những “thần đồng” không? Giáo dục phổ thông là gì, nếu không KHAI TÂM mà chỉ lo khái trí, nhồi nhét kiến thức? Tạp chí TIME ngày 30-04-2001 cảnh báo: “Vậy bạn muốn biến trẻ em thành thần đồng? … Hãy vứt những danh hiệu phô trương đi, hãy nghỉ ngơi và để cho trẻ em là trẻ em”! Trong con mắt của tác giả bài viết này, đó chính là một hệ quả suy rộng tuyệt vời của Định Lý Gödel sang lĩnh vực giáo dục!
(1): “Thế giới như tôi thấy”, Albert Einstein, NXB Tri Thức, 2005, Trang 49
(2): “Einstein”, Nguyễn Xuân Xanh, NXB Tổng Hợp TP HCM, 2007, Trang 1
(3): Đánh giá của tạp chí TIME, được nhắc lại trong “Gödel, A Life of Logic”, John Casti & Werner DePauli, Perseus Publishing, Cambridge, Massachusetts, 2000.
(4): Nhận định về Định lý Gödel trên trang web eiNET.net:
http://www.einet.net/review/68640-860627/G_del_s_Incompleteness_Theorem.htm
(5): Đánh giá của Planck dành cho Einstein khi Einstein công bố Thuyết Tương Đối.
(6): Viện nghiên cứu cao cấp Princeton (Insitute For Advanced Study, Princeton), Mỹ
(7): Xem “Lời sám hối của một nhà toán học hình thức”, Phạm Việt Hưng, Khoa Học & Tổ Quốc Tháng 05-2009, hoặc trên mạng Vietsciences (http://vietsciences.free.fr/) Tháng 05-2009.
(8): Xem “Định lý cuối cùng của Fermat”, Simon Singh, bản dịch của Phạm Văn Thiều và Phạm Việt Hưng, NXB Trẻ 2004, Chương 4.
(9): Lời của William Shakespeare
(10): Xem tài liệu đã dẫn trong ghi chú (8).
(11): Xem “Thầy Bói Xem Voi”, Phạm Việt Hưng, Khoa Học & Tổ Quốc, Tháng 02-2009 và trên mạng Vietsciences Tháng 02-2009.
(12): Xem “Con Voi Toán Học hay Chiếc Chén Thánh của Chủ Nghĩa Hình Thức”, Phạm Việt Hưng, Khoa Học & Tổ Quốc Tháng 03-2009 và trên mạng Vietsciences Tháng 03-2009.
(13): Xem tài liệu ghi chú (11).
(14) Xem International Journal of Theoretical Physics 21 (1982), Gregory J. Chaitin, trên trang web:http://www.cs.auckland.ac.nz/~chaitin/georgia.html
(15) Xem Wikipedia, mục từ Gödel's incompleteness theorems. Bài toán số 2 là tìm một hệ tiên đề đầy đủ và phi mâu thuẫn cho Số Học.
(16) Xem trang mạng: http://plato.stanford.edu/entries/goedel/
(17): Xem các trang mạng sau đây:
http://www.exploratorium.edu/complexity/CompLexicon/godel.html
http://picturesofplaces.blogspot.com/search/label/Godel
http://www.resonancepub.com/kurtgodel.htm
(18): Xem tài liệu ghi chú (12).